Tim-3 Negatively Mediates Natural Killer Cell Function in LPS-Induced Endotoxic Shock
نویسندگان
چکیده
Sepsis is an exaggerated inflammatory condition response to different microorganisms with high mortality rates and extremely poor prognosis. Natural killer (NK) cells have been reported to be the major producers of IFN-γ and key players in promoting systematic inflammation in lipopolysaccharide (LPS)-induced endotoxic shock. T-cell immunoglobulin and mucin domain (Tim)-3 pathway has been demonstrated to play an important role in the process of sepsis, however, the effect of Tim-3 on NK cell function remains largely unknown. In this study, we observed a dynamic inverse correlation between Tim-3 expression and IFN-γ production in NK cells from LPS-induced septic mice. Blockade of the Tim-3 pathway could increase IFN-γ production and decrease apoptosis of NK cells in vitro, but had no effect on the expression of CD107a. Furthermore, NK cell cytotoxicity against K562 target cells was enhanced after blocking Tim-3 pathway. In conclusion, our results suggest that Tim-3 pathway plays an inhibitory role in NK cell function, which might be a potential target in modulating the excessive inflammatory response of LPS-induced endotoxic shock.
منابع مشابه
Several functions of immune cells in mice changed by oxidative stress caused by endotoxin.
We have studied natural killer (NK) activity, lymphoproliferative response, the release of several cytokines (IL-2, TNF alpha and IL-1 beta) and the ROS production in peritoneal leukocytes obtained 0, 2, 4, 12 and 24 h after lipopolysaccharide (LPS) injection. Lethal septic shock (100 % mortality occurred at 30 h after LPS administration) was caused in female BALB/c mice by intraperitoneal inje...
متن کاملInterferon β protects against lethal endotoxic and septic shock through SIRT1 upregulation
Lipopolysaccharide (LPS), an endotoxin derived from gram-negative bacteria, promotes the secretion of proinflammatory cytokines and mediates endotoxemia through activation of mitogen activated protein kinases, NF-κB, and interferon regulatory factor-3. Silent information regulator transcript-1 (SIRT1), an NAD-dependent deacetylase, mediates NF-κB deacetylation, and inhibits its function. SIRT1 ...
متن کاملAre NKT cells essential for endotoxic shock?
Endotoxic shock is a major health threat caused by gram-negative bacteria and their unique cell wall component, lipopolysaccharide, which induces exaggerated production of proinflammatory cytokines. Although macrophages play a central role in the pathogenesis of endotoxic shock, natural killer (NK)1+ cells are also involved in this mechanism. NK1+ cells comprise two major populations, namely NK...
متن کاملLipopolysaccharide Induces Disseminated Endothelial Apoptosis Requiring Ceramide Generation
The endotoxic shock syndrome is characterized by systemic inflammation, multiple organ damage, circulatory collapse and death. Systemic release of tumor necrosis factor (TNF)-alpha and other cytokines purportedly mediates this process. However, the primary tissue target remains unidentified. The present studies provide evidence that endotoxic shock results from disseminated endothelial apoptosi...
متن کاملProgranulin deficiency leads to severe inflammation, lung injury and cell death in a mouse model of endotoxic shock
Progranulin (PGRN) is a crucial secreted growth factor involved in various kinds of physiologic and disease processes and often has a protective role in inflammatory diseases. This study was designed to investigate the protective effects of PGRN on endotoxic shock in a mouse model of PGRN deficiency. After lipopolysaccharide (LPS) injection to induce endotoxic shock in mice, PGRN levels were in...
متن کامل